Comparte si te a gustado:

Bayesian Statistics & Supervised Learning - A/B Testing

Publicado en 28 Jul 2024

Udemy UK

What you'll learn

  • Apply Bayesian methods to A/B testing and also use adaptive algorithms to improve A/B testing performance
  • Naive Bayes Classifier introduction and Use of naive bayes in Machine Learning
  • Understanding A/B testing and Split tests
  • Power of A/B and testing and Example solving in Python using dummy data

Requirements

  • Prior knowledge of machine learning required
  • Basic knowledge of Python programming and statistics

Description

Machine learning is a scientific discipline that explores the construction and study of algorithms that can learn from data. Such algorithms operate by building a model from example inputs and using that to make predictions or decisions, rather than following strictly static program instructions. Machine learning is closely related to and often overlaps with computational statistics; a discipline that also specializes in prediction-making.

Through this training we are going to apply Bayesian methods to A/B testing and also use adaptive algorithms to improve A/B testing performance.

The training will include the following;

- Naive Bayes Classifier introduction
- Use of naive bayes in Machine Learning
- Understanding A/B testing
- Split tests
- Power of A/B and testing
- Example solving in Python using dummy data

Bayesian statistics is a particular approach to applying probability to statistical problems. It provides us with mathematical tools to update our beliefs about random events in light of seeing new data or evidence about those events. Bayesian statistics is an approach to data analysis based on Bayes’ theorem, where available knowledge about parameters in a statistical model is updated with the information in observed data. The background knowledge is expressed as a prior distribution and combined with observational data in the form of a likelihood function to determine the posterior distribution. The posterior can also be used for making predictions about future events. In particular Bayesian inference interprets probability as a measure of believability or confidence that an individual may possess about the occurance of a particular event.

Who this course is for:

  • Anyone who wants to learn about data and analytics
  • Data Engineers, Analysts, Architects, Software Engineers, IT operations, Technical managers

Debes tener en cuenta que los cupones duran maximo 4 dias o hasta agotar 1000 inscripciones,pero puede vencer en cualquier momento. Obten el curso con cupon haciendo clic en el siguiente boton:

(Cupón válido para las primeras 1000 inscripciones): EDUCBA7221912
Udemy UK
Tags:

Articulos Relacionados

content

Curso Python: Análisis y visualización de datos

Comienza en el mundo del análisis de datos y añade valor a tu CV

Ir al Curso
content

Data Science: Python for Data Analysis Full Bootcamp

Build your Practical Python programming skills for Data Handling, Analysis and Visualization with Real Examples

Ir al Curso
content

Python-Introduction to Data Science and Machine learning A-Z

Python basics Learn Python for Data Science Python For Machine learning and Python Tips and tricks

Ir al Curso
Suscríbete a nuestro boletín
Reciba los últimos Cupones y promociones (Solicitar Cupón)